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Abstract

Recent successes in neural networks have greatly encouraged their use in solving classical prob-

lems in applied mathema cs, as the networks allow for rapid prototyping with usable es ma ons.

This holds especially true in areas involving high dimensional par al differen al equa ons (PDEs),

such as quantum physics and fluid dynamics. Here, we present a neural network architecture, the

physics-informed neural network (PINN), and implement a specific method, the con nuous me

approach.

Background

We describe the PINN approach for approxima ng the solu on

u : [0, T ] × D → R (?)
of an evolu on equa on

∂tu(t, x) + N [u](t, x) = 0, (t, x) ∈ (0, T ] × D, (1a)

u(0, x) = u0(x), x ∈ D, (1b)

where N is a differen al operator ac ng on u, D ⊂ Rd a bounded domain, T denotes the final

me and u0 : D → R the prescribed ini al data. Based on the literature review conducted, we

restrict our discussion to the Dirichlet case and define

u(t, x) = ub(t, x), (t, x) ∈ (0, T ] × ∂D, (1c)

where ∂D denotes the boundary of the domain D and ub : (0, T ] × ∂D → R the given boundary

data. The method constructs a neural network approxima on uθ(t, x) ≈ u(t, x) of the solu on of

(1), where uθ : [0, T ] × D → R denotes a func on realized by a neural network with parameters

θ.

Continuous Time Approach

Figure 1) Neural network architecture of the PINN approach

The (strong) residual of a given neural network approxima on of (?) with respect to the PINN

approach above is

rθ(t, x) := ∂tuθ(t, x) + N [uθ] (t, x) (2)

These networks are composi ons of alterna ng affine linear W ` · +b` and nonlinear func ons

σ`(·) called ac va ons, i.e.,

uθ(z) := W LσL
(

W L−1σL−1
(

· · · σ1
(

W 0z + b0
)

· · ·
)

+ bL−1
)

+ bL,

where W ` and b` are weight matrices and bias vectors, and z = [t, x]T .

PINN Approach

For the solu on of the PDE (1) now proceeds by minimiza on of the loss func onal

φθ(X) := φr
θ (Xr) + φ0

θ

(
X0

)
+ φb

θ

(
Xb

)
, (3)

where X denotes the collec on of training data and the loss func on φθ contains the following

terms:

The Mean Squared Residual

φr
θ (Xr) := 1

Nr

Nr∑
i=1

|rθ (tri , xr
i )|2

in a number of colloca on points Xr :=
{(

tri , xr
i

)}Nr
i=1 ⊂ (0, T ] × D, where rθ is the physics-

informed neural network (2),

The Mean Squared Misfitw.r.t Initial and Boundary Conditions
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− ub
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in a number of points X0 :=

{(
t0i , x0

i

)}N0
i=1 ⊂ {0} × D and Xb :=

{(
tbi , xb

i

)}Nb

i=1
⊂ (0, T ] × ∂D,

where uθ is the neural network approxima on of the solu on u : [0, T ] × D → R.

Example: Heat Equation

A classical problem in the domain of PDEs, the heat equa on governs the temperature distribu on

of a rod of length l :

ut = kuxx (t, x) ∈ R+ × (0, l)
u(t, 0) = u(t, l) = 0 t ≥ 0
u(0, x) = f (x) x ∈ (0, l).

If k, called the conduc vity is a constant the rod is isotropic; if k = k(x) it is anisotropic or

heterogeneous medium.

Application

For the fi ng, we choose k = 1, l = π, and f (x) = sin(3x) for the applica on of the PINN.

We assume that the colloca on points Xr as well as the points for the ini al me and boundary

data X0 and Xb are generated by random sampling from a uniform distribu on. (N = 10, 000)

Figure 2) Plot of the colloca on points (N = 10, 000)

PINN Approximation and Evolution of Loss

(a) View 1 (b) View 2 (c) Loss

Figure 1. The same cup of coffee. Mul ple mes.Test

The chosen problem can be solved via separa on of variables. The idea is to assume the solu on

u = u(t, x) can be wri en as

u(t, x) = F (t)G(x)

If we compute the corresponding par al deriva ves and replace in the PDE, we get

F ′(t)
F (t)

= G′′(x)
G(x)

The only way this equality is true for all t and x is if

F ′(t) = λF (t) and G′′(x) = λG(x)
The boundary condi on becomes

G(0) = G(π) = 0

We can easily solve this ordinary differen al equa ons. By considering the cases λ > 0, λ = 0
and λ < 0, we conclude λ = −n2, n ∈ N and (up to constants)

F (t) = exp
(

−n2t
)

and G(x) = sin(nx)

Since the equa on is linear, by the principle of superposi on u(t, x) =
∞∑

n=1
cn exp

(
−n2t

)
sin(nx)

Finally, since u(0, x) = sin(3x) =
∞∑

n=1
cn sin(nx) with c3 = 1 and cn = 0 if n 6= 3. Hence,

u(t, x) = exp(−9t) sin(3x)

True Solution

(a) PINN (b) True Solu on
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